skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bastani, Osbert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 24, 2026
  2. In therapeutic antibody design, achieving a balance between optimizing binding affinity subject to multiple constraints, and sequence diversity within a batch for experimental validation presents an important challenge. Contemporary methods often fall short in simultaneously optimizing these attributes, leading to ineffi- ciencies in experimental exploration and validation. In this work, we tackle this problem using the latest developments in constrained latent space Bayesian op- timization. Our methodology leverages a deep generative model to navigate the discrete space of potential antibody sequences, facilitating the selection of diverse, high-potential candidates for synthesis. We also propose a novel way of training VAEs that leads to a lower dimensional latent space and achieves excellent per- formance under the data-constrained setting. We validate our approach in vitro by synthesizing optimized antibodies, demonstrating consistently high binding affini- ties and preserved thermal stability. 
    more » « less